USB 32 Channel Photo Isolator Input Board

SMARTLAB USB 32 CHANNELS PHOTO **ISOLATOR INPUT**

OPERATION MANUAL

Decision Computer Int'l. Co., Ltd.

CHAPTERS

TABLE OF CONTENTS

Ι.	Introduction
2.	Hardware Configuration
3.	Diagnostic under Windows/XP10
4.	Programming under Windows/XP and Linux10
	APPENDICES
A.	Warranty Information11
В.	Data Sheet

CHAPTER 1

INTRODUCTION

The USB 32 channels photo isolator input card provides 32 photo couple digital input channels, and one RS232/RS422/RS485 port functions, which allow the digital input signals to be completely floated and prevent the ground loop and COM communication.

The USB 32 channels photo isolator input card provides one asynchronous serial communication ports (RS232 or RS422 or RS485), which link the computer and serial peripheral devices such as terminals, modems, serial printers, plotters, ... etc.

The USB 32 channels photo isolator input card provides Plug and Play (PnP) features, it is a programmable I/O interface card for PC/486, Pentium, or compatibles. The on board high speed 8051 uC provides USB functions run at 12Mbps full speed or 1.5Mbps low speed.

The features of USB 32 channels photo isolator input card are:

- USB 2.0with Plug and Play (PnP) features.
- High speed 8051 uC core.
- Support USB ID selection to identify USB device.
- Support 32 photo couple input channels and one RS232/RS422/RS485 port functions.
- Allow the photo input signals to be completely floated and prevent the ground loops.
- 32 LED correspond to 32 input ports activation status.
- By using PC817 photo couple chips.

- Allow to connect RS232 or RS422/RS485 extension board with DB9 connector.
- Power supplied from USB or external DC +5V/3A.
- 5000V isolation voltage.
- Maximum load voltage is 30V.
- Maximum 50mA forward input current.
- Input voltage range from 0V to 30V.
- Activation voltage of photo input:

When short jumpers (input range from 0 to 20V DC)

0 to 3.3V inactive

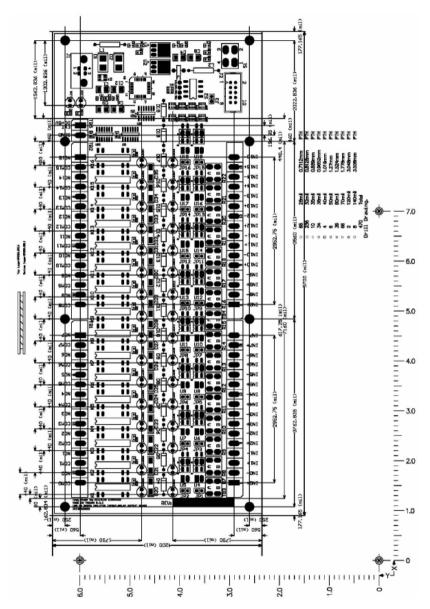
4.5 to 20V active

When open jumpers (input range from 0 to 30V DC)

0 to 17.6V inactive

18 to 30V active

- Suitable for Linux, MS/WINDOWS, ... etc.
- Operating temperature range from 0 to 33C.
- Relative humidity rage from 0 to 90%.


PACKAGE CONTENTS:

- SMARTLAB USB 32 channels photo input board.
- USB cable.
- Decision Studio and User's manual CD.
- Two Different Connecter Types can be selected:

Standard: European P.C.B type terminal blocks Professional: Pluggable terminal blocks

Optional

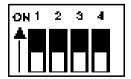
- Extension board with DB9: RS232 or RS422/485
- PCB Carrier

CHAPTER 2

HARDWARE CONFIGURATION

Before you use the USB 32 channels photo couple input card, please ensure that the jumpers and switches setting. The proper jumper and switches settings for the 32 channels photo couple input card are described in the following.

2.1 Switch Settings


1. S1 Reset

The S1 switch is used to reset 8051, the signal assignments are shown in the following.

Pin	Signals
3,4	Reset SW+
1,2	Reset SW-

2. S2 USB ID

The S2 switch is used to identify USB card ID. Please set different card ID to each card (do not duplicate card ID setting).

1	2	3	4	Card ID
ON	ON	ON	ON	
OFF	ON	ON	ON	14
ON	OFF	ON	ON	13
OFF	OFF	ON	ON	12
ON	ON	OFF	ON	11
OFF	ON	OFF	ON	10
ON	OFF	OFF	ON	9
OFF	OFF	OFF	ON	8
ON	ON	ON	OFF	7
OFF	ON	ON	OFF	6
ON	OFF	ON	OFF	5
OFF	OFF	ON	OFF	4
ON	ON	OFF	OFF	3
OFF	ON	OFF	OFF	2
ON	OFF	OFF	OFF	1
OFF	OFF	OFF	OFF	0

3. Down load revised firmware

When the S2 switch is set to ON ON ON ON status, means down load revised firmware. please follow the steps shown in the following:

- 1. Set S2 to ON ON ON ON.
- 2. Run USBBootloader program to down load revised firmware.

2.2 Jumper Settings

1. Input Voltage Range Selection (JP1 to JP32)

2

JP1 to JP32 are used to select input voltage range. The JP1 is used to select photo couple input channel 0, and JP2 is used to select photo couple input channel 1, ... etc. When short the jumper, the input voltage range from 0 to 20V, and the active voltage form 4.5 to 20V. When open the jumper, the input voltage range from 0 to 30V, and the active voltage from 18 to 30V.

Jumper	Input Voltage	Inactive Voltage	Active Voltage
open	0 to 30V	0 to 17.6V	18 to 30V
short	0 to 20V	0 to 3.3V	4.5 to 20V

2.3 USB Connector

1. USB Connector

The USB connector is connected to computer USB port by using USB cable.

2.4 LED Status

1. LED1

The LED1 is an indicator to show the power is supplied normally.

2. LED2

The LED2 is an indicator to warning the USB link status. When it lights, it means USB connection works normally, otherwise it is fail.

2.5 Connector and Jumper for Serial Communication

1. The connector of serial communication(J2)

To use RS422/RS485/RS232, please connect JP1 to extension board by 10 pins flat cable. (Optional)

2. Enable Serial Port (J3)

J3 is used enable serial port communication, when short the J3, means enable serial port, otherwise, when open the J3, the serial port communication is disable.

2.6 Connector Assignments

The photo isolator input signal pin assignments are shown in the below.

Pin	Signal	Description
1	IN0+	Opto-isolator Ch. 00 + Input
2	INO-	Opto-isolator Ch. 00 - Input
3	IN1+	Opto-isolator Ch. 01 + Input
4	IN1-	Opto-isolator Ch. 01 - Input

5	IN2+	Opto-isolator Ch. 02 + Input
6	IN2-	Opto-isolator Ch. 02 - Input
7	IN3+	Opto-isolator Ch. 03 + Input
8	IN3-	Opto-isolator Ch. 03 – Input
9	IN4+	Opto-isolator Ch. 04 + Input
10	IN4-	Opto-isolator Ch. 04 - Input
11	IN5+	Opto-isolator Ch. 05 + Input
12	IN5-	Opto-isolator Ch. 05 - Input
13	IN6+	Opto-isolator Ch. 06 + Input
14	IN6-	Opto-isolator Ch. 06 - Input
15	IN7+	Opto-isolator Ch. 07 + Input
16	IN7-	Opto-isolator Ch. 07 – Input

Pin	Signal	Description
1	IN8+	Opto-isolator Ch. 08 + Input
2	IN8-	Opto-isolator Ch. 08 - Input
3	IN9+	Opto-isolator Ch. 09 + Input
4	IN9-	Opto-isolator Ch. 09 - Input
5	IN10+	Opto-isolator Ch. 10 + Input
6	IN10-	Opto-isolator Ch. 10 - Input
7	IN11+	Opto-isolator Ch. 11 + Input
8	IN11-	Opto-isolator Ch. 11 – Input
9	IN12+	Opto-isolator Ch. 12 + Input
10	IN12-	Opto-isolator Ch. 12 - Input
11	IN13+	Opto-isolator Ch. 13 + Input
12	IN13-	Opto-isolator Ch. 13 - Input
13	IN14+	Opto-isolator Ch. 14 + Input
14	IN14-	Opto-isolator Ch. 14 - Input
15	IN15+	Opto-isolator Ch. 15 + Input
16	IN15-	Opto-isolator Ch. 15 - Input

Pin	Signal	Description
1	IN16+	Opto-isolator Ch. 16 + Input

Isolator Input Board

2	IN16-	Opto-isolator Ch. 16 - Input
3	IN17+	Opto-isolator Ch. 17 + Input
4	IN17-	Opto-isolator Ch. 17 - Input
5	IN18+	Opto-isolator Ch. 18 + Input
6	IN18-	Opto-isolator Ch. 18 - Input
7	IN19+	Opto-isolator Ch. 19 + Input
8	IN19-	Opto-isolator Ch. 19 – Input
9	IN20+	Opto-isolator Ch. 20 + Input
10	IN20-	Opto-isolator Ch. 20 - Input
11	IN21+	Opto-isolator Ch. 21 + Input
12	IN21-	Opto-isolator Ch. 21 - Input
13	IN22+	Opto-isolator Ch. 22 + Input
14	IN22-	Opto-isolator Ch. 22 - Input
15	IN23+	Opto-isolator Ch. 23 + Input
16	IN23-	Opto-isolator Ch. 23 - Input

Pin	Signal	Description
1	IN24+	Opto-isolator Ch. 24 + Input
2	IN24-	Opto-isolator Ch. 24 - Input
3	IN25+	Opto-isolator Ch. 25 + Input
4	IN25-	Opto-isolator Ch. 25 - Input
5	IN26+	Opto-isolator Ch. 26 + Input
6	IN26-	Opto-isolator Ch. 26 - Input
7	IN27+	Opto-isolator Ch. 27 + Input
8	IN27-	Opto-isolator Ch. 27 – Input
9	IN28+	Opto-isolator Ch. 28 + Input
10	IN28-	Opto-isolator Ch. 28 - Input
11	IN29+	Opto-isolator Ch. 29 + Input
12	IN29-	Opto-isolator Ch. 29 - Input
13	IN30+	Opto-isolator Ch. 30 + Input
14	IN30-	Opto-isolator Ch. 30 - Input
15	IN31+	Opto-isolator Ch. 31 + Input
16	IN31-	Opto-isolator Ch. 31 - Input

CHAPTER 3 DIAGNOSTIC UNDER WINDOWS/XP

USB Test Program.exe is a diagnostic program to test your USB devices under Windows/XP.

User can get USB Test Program.exe programs from Decision Studio CD.

CHAPTER 4 SOFTWARE PROGRAMMING UNDER WINDOWS/XP AND LINUX

Under Windows, we provide function library and dll file for users to program the device in supported language. You can find manual "USBDII_Manual.pdf" and demo code in VB/VC/Delphi from Decision Studio CD.

Under Linux, we provide .c source to allow user directly to access device. You can find manual and example in "dcihid-0.5.1.tgz".

APPENDIX A

WARRANTY INFORMATION

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD. All rights reserved. No part of SmartLab software and manual may be produced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a registered user may use he program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the SmartLab product will be supplied free from defects in

materials and workmanship and be fully functional under normal usage.

In the event of the failure of a SmartLab product within the specified warranty period, SmartLab will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

The purchaser must pay transportation costs for goods returned. Repaired goods will be dispatched at the expense of SmartLab.

To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that you return the Warranty card.

Under this Limited Warranty, SmartLab's obligations will be limited to repair or replacement only, of goods found to be defective a specified above during the warranty period. SmartLab is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the SmartLab product. SmartLab reserves the right to determine what constitutes warranty repair or replacement.

Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by SmartLab. Goods returned without this authorization will not be attended to.

APPENDIX B

DATA SHEET

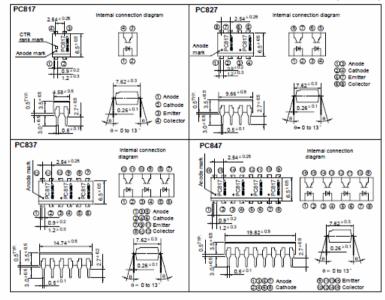
PC817 Series

High Density Mounting Type Photocoupler

Lead forming type (I type) and taping reel type (P type) are also available. (PC817WPC817P)
TUV (VDE0884) approved type is also available as an option.

SHARP

- 1. Current transfer ratio (CTR: MIN. 50% at I = 5mA, Vc=5V)
- 2. High isolation voltage between input and output (Visc: 5 000V ms)
- 3. Compact dual-in-line package
 - PC817: 1-channel type
 - PC827: 2-channel type PC837: 3-channel type
 - PC847: 4-channel type
- 4. Recognized by UL, file No. E64380


■ Applications

- 1. Computer terminals
- 2. System appliances, measuring instruments
- 3. Registers, copiers, automatic vending
- 4. Electric home appliances, such as fan
- 5. Signal transmission between circuits of different potentials and impedances

■ Outline Dimensions

(Unit : mm)

PC817 Series

" in the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

SHARP PC817 Series

665	Parameter	Symbol	Rating	Unit
	Forward current	I_{F}	50	mA
	*Peak forward current	I_{PM}	1	A
Input	Reverse voltage	V _R	6	V
	Power dissipation	P	70	mW
- 9	Collector-emitter voltage	V _{cso}	35	V
	Emitter-collector voltage	V _{ECO}	6	V
Output	Collector current	I_c	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	Ptot	200	mW
	**Isolation voltage	V _{iso}	5 000	Vm
	Operating temperature	T opr	- 30 to + 100	.c
	Storage temperature	T atg	- 55 to + 125	.c
	*3Soldering temperature	T and	260	.c

^{*1} Pulse width == 100 µs, Duty ratio: 0.001

■ Electro-optical Characteristics

(Ta = 25°C)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage		V _F	$I_y = 20 \text{mA}$	-	1.2	1.4	V
-	Peak forward voltage		V _{IM}	$I_{PM} = 0.5A$		827	3.0	V
Input	Reverse current		I_R	$V_R = 4V$	-	-	10	μA
	Terminal capacitance		C,	V= 0, f= 1kHz		30	250	pF
Output	Collector dark cur	rent	Icro	$V_{CR} = 20V$		- 62	10 -7	A
	**Current transfer ratio		CTR	$I_F = 5 \text{mA}, V_{CR} = 5 \text{V}$	50	-	600	%
	Collector-emitter saturation voltage		V _{CE(ut)}	$I_y = 20 \text{mA}$, $I_C = 1 \text{mA}$		0.1	0.2	V
Transfer	Isolation resistance		R _{BO}	DC500V, 40 to 60% RH	5 x 10 m	1011		Ω
charac- teristics	Floating capacitance		Cr	V= 0, f= 1MHz	-	0.6	1.0	pF
	Cut-off frequency	8 (fc	V _{CE} = 5V, I _C = 2mA, R _L = 100 Ω, - 3dB		80	5 50	kHz
	Response time Rise time	tr	11 - 21 1 - 2- 1 D - 100 c	20	4	18	μs	
		te	$V_{CE} = 2V$, $I_{C} = 2mA$, $R_{L} = 100 \Omega$	-	3	18	шя	

Model No.	Rank mark	CTR (%)
PC817A	A	80 to 160
PC817B	В	130 to 260
PC817C	С	200 to 400
PC817D	D	300 to 600
PC8 • 7AB	A or B	80 to 260
PC8®7BC	B or C	130 to 400
PC8 • 7CD	C or D	200 to 600
PC8 • 7AC	A, B or C	80 to 400
PC8●7BD	B, C or D	130 to 600
PC8 • 7AD	A, B, C or D	80 to 600
PC8 * 7	A, B, C, D or No mark	50 to 600

■ · 1 or 2 or 3 or 4

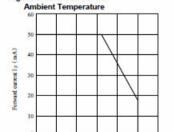
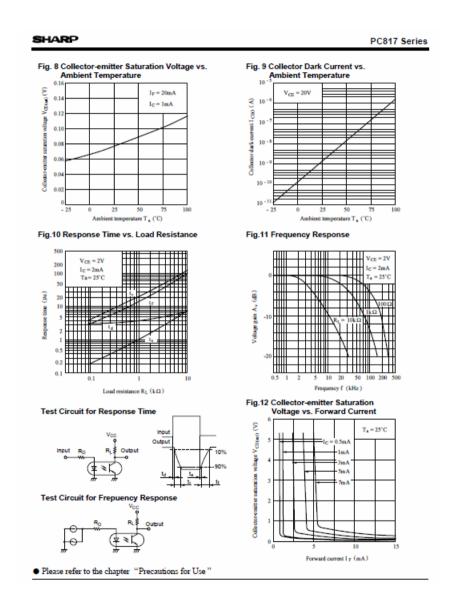



Fig. 1 Forward Current vs.

^{*2 40} to 60% RH, AC for 1 minute
