
USB-I/O Manual

UHRO-16 - DIN-Rail-Version

UPRO-16 - Board-Version

16 photo couple input / 16 relay output channels
Product Code: AUSB16P/R USB 16 PHOTO ISO./ RELAY BOARD

DECISION-COMPUTER Jürgen Merz e.K.
Lengericher Str. 21
49536 Lienen
Telefon +49 (0)5483-77002
Telefax +49 (0)5483-77003
http://www.decision-computer.de

Product Code:
AUSB16P/R USB 16 PHOTO ISO./ RELAY BOARD
UHRO-16 - DIN-Rail-version
UPRO-16 - Board-version

Bus: USB 2.0

Description:
16 photo couple input / 16 relay output channels

Input maximum load voltage is 30V

By jumper, you can select two range of voltage
0 - 4.5V off and 6V - 20V on. (0 - 20V)
0 - 16.5V off and 18 - 30V on (0 - 30V)

PC817 photo couple chips.
5000V isolation voltage.
16 Relays - 1 x COM/NO

Max switching current: 500mA
Max contact rating for relay: 100V DC

32 LED correspond to I/O ports activation status
Connections via Pluggable Screw Terminals

Features:
For direct DIN-Rail mounting
Also as board without DIN Rail adapter available

High Speed 8051 μC Core
USB 2.0 Function Controller
Support USB ID 0~14 SET

POWER External DC+5V 0,5A (max. 5.2V) - Best is to use
5V/>1A

Software/Driver:

Windows will use HID-interface and sample for program-
ming, Linux driver and sample for programming.

Package includes the following items:

USB 16PR Board
USB cable
Software and Manual CD
The DIN-Rail-version comes with a EMI-Protection-kit
This kit is optional in the board-version!

Operating temperature range: 0 ~ 55C.
Relative humidity rage: 0 ~ 90%.
Size: 250 mm x 120 mm x 55 mm

This device should not be used in applications where failure may result in death or injury without
proper consideration and design of associated system architecture and redundant safety features.
Connection and repairs are allowed only by a specialist.

When used in a machine or plant, is to ensure that after installation continues to the relevant
provisions, rules and guidelines are complied with!

These products come into contact voltage, therefore to consider the applicable VDE regulations
VDE 0550 / 0551, VDE 0700, VDE 0711, especially VDE 0100 and VDE 0860.

 Security Note

 Data

USB wiring is very sensitive against EMI errors (mainly sparking when opening contacts). The U-EMI-1 Kit is included with the DIN
rail version and includes two Würth folded cores for the USB data cable and a Ferrite sleeve for the power cable. If you are using
a HUB, it should be protected the connection HUB/computer (U-EMI-2)! The kit includes two Würth folded cores for the USB data
cable.

The cores must be mounted as shown in the illustrations, as close as possible on the connectors.

But also the avoidance of errors is very important. Therefore, the careful layout and installation of the wiring is very important!

Folding core on the USB cable to the computer Folding core on the USB cable to the USB IO
1 or 2 x through the core

TB1 - External 5V DC
1 EXT+V 5V+

2 SGND 5V-

More than 5.2V can kill the CPU!

Ferrite sleeve on the power supply cable

The power-supply of our products must be 5V external DC. It is to pay attention to correct polarity. Otherwise, the product could be
damaged. If the board is by wrong power supply except function, you can try new store the firmware.

The U-EMI-1 Kit is included with the DIN rail version, and includes ferrite sleeve, shielded by EMI for the power cable. Are shown
on the image above.

For earlier versions of the Decision-USB IO was also the possibility of the power supply via the USB bus. To get greater stability,
this connection was removed. The USB bus power is not always able to provide enough power for the Relais switched on! The
result is a loss of connection or "hanging" USB module. An external power supply provides a secure power supply!

USB Power Management in Windows - In Window System, USB communication might disconnect under Power Saving Mode or
Sleep Mode. When connecting USB boards on PC, please make sure windows power management set in case interference with
USB communication.

 J1 USB Connection USB-B
 A suitable cable is included

 Power Supply - TB1

VCC +5 VDC (USB VBUS POWER)

D- Data -

D+ Data +

SGND Signal Ground

Multiple Boards Connect
When you need to connect more than 3 boards on one PC, please make sure the following below

1. Set different ID for each board.

2. Supply external 5V to each USB board.

3. Supply external 5V to USB hub.

Please make sure your external 5V power supply enough for the USB I/O boards. If input voltage is below 4.8V for USB I/O board,
it can’t work normally and sometimes it will cause device manager keeping refreshing itself or can’t recognize the device.

To reset the "hanging" USB-Module

Set different ID for each board

 S1 Reset Button

S2 USB ID

1 2 3 4 Card ID

ON ON ON ON --

OFF ON ON ON 14

ON OFF ON ON 13

OFF OFF ON ON 12

ON ON OFF ON 11

OFF ON OFF ON 10

ON OFF OFF ON 9

OFF OFF OFF ON 8

ON ON ON OFF 7

OFF ON ON OFF 6

ON OFF ON OFF 5

OFF OFF ON OFF 4

ON ON OFF OFF 3

OFF ON OFF OFF 2

ON OFF OFF OFF 1

OFF OFF OFF OFF 0

The JP3 is used to select voltage signal opto+ and opto- range of photo couple input channel 1, and the JP4 is used to select
voltage signal range of photo input channel 2, …etc.

Jumper Input Range Inactive Voltage Active Voltage

short 0 to 30V 0 to 1.5V 3 to 20V

open 0 to 30V 0 to 16.5V 18 to 30V

Strong electromagnetic sources, such as power lines, large electric motors, switches, or welders can cause strong electromagnetic
interference. Video monitors and cables are strong sources of interference.

If the cable must be led by an area with significant electromagnetic interference, shielded cables with grounding on the source
should be used.

Avoid placing your cable parallel to a high-voltage line! to minimize adverse effects, insert the cable at right angle to the power line.

 TB2/3 ISOLATOR Input Ports

 ISOLATOR Input SET JP3 to JP18

 Schematic Input Ports

Pin Signal Description

1 IN0+ Opto-isolator Ch. 00 + Input

2 IN0- Opto-isolator Ch. 00 - Input

3 IN1+ Opto-isolator Ch. 01 + Input

4 IN1- Opto-isolator Ch. 01 - Input

5 IN2+ Opto-isolator Ch. 02 + Input

6 IN2- Opto-isolator Ch. 02 - Input

7 IN3+ Opto-isolator Ch. 03 + Input

8 IN3- Opto-isolator Ch. 03 - Input

9 IN4+ Opto-isolator Ch. 04 + Input

10 IN4- Opto-isolator Ch. 04 - Input

11 IN5+ Opto-isolator Ch. 05 + Input

12 IN5- Opto-isolator Ch. 05 - Input

13 IN6+ Opto-isolator Ch. 06 + Input

14 IN6- Opto-isolator Ch. 06 - Input

15 IN7+ Opto-isolator Ch. 07 + Input

16 IN7- Opto-isolator Ch. 07 - Input

Pin Signal Description

1 IN8+ Opto-isolator Ch. 08 + Input

2 IN8- Opto-isolator Ch. 08 - Input

3 IN9+ Opto-isolator Ch. 09 + Input

4 IN9- Opto-isolator Ch. 09 - Input

5 IN10+ Opto-isolator Ch. 10 + Input

6 IN10- Opto-isolator Ch. 10 - Input

7 IN11+ Opto-isolator Ch. 11 + Input

8 IN11- Opto-isolator Ch. 11 - Input

9 IN12+ Opto-isolator Ch. 12 + Input

10 IN12- Opto-isolator Ch. 12 - Input

11 IN13+ Opto-isolator Ch. 13 + Input

12 IN13- Opto-isolator Ch. 13 - Input

13 IN14+ Opto-isolator Ch. 14 + Input

14 IN14- Opto-isolator Ch. 14 - Input

15 IN15+ Opto-isolator Ch. 15 + Input

16 IN15- Opto-isolator Ch. 15 - Input

When a reed relay is used with an electromagnetic relay or solenoid, the energy stored will cause an inverse voltage when the
reed contacts break. The voltage, although dependent on the inductance value, sometimes reaches as high as several hundred
volts and becomes a major factor to deteriorate the contacts.

• DC: Protection circuit with a diode
• DC and AC: Protection circuit with Varistor or RC-element

The suppressor must be made to the load.

 TB4/5 Relay-Output

 Schematic Outputs

 Contact protection circuits

Pin Signal Description

1 NO 0 Relay Ch. 00 - Output

2 COM 0 Relay Ch. 00 - Output

3 NO 1 Relay Ch. 01 - Output

4 COM 1 Relay Ch. 01 - Output

5 NO 2 Relay Ch. 02 - Output

6 COM 2 Relay Ch. 02 - Output

7 NO 3 Relay Ch. 03 - Output

8 COM 3 Relay Ch. 03 - Output

9 NO 4 Relay Ch. 04 - Output

10 COM 4 Relay Ch. 04 - Output

11 NO 5 Relay Ch. 05 - Output

12 COM 5 Relay Ch. 05 - Output

13 NO 6 Relay Ch. 06 - Output

14 COM 6 Relay Ch. 06 - Output

15 NO 7 Relay Ch. 07 - Output

16 COM 7 Relay Ch. 07 - Output

Pin Signal Description

1 NO 8 Relay Ch. 08 - Output

2 COM 8 Relay Ch. 08 - Output

3 NO 9 Relay Ch. 09 - Output

4 COM 9 Relay Ch. 09 - Output

5 NO 10 Relay Ch. 10 - Output

6 COM 10 Relay Ch. 10 - Output

7 NO 11 Relay Ch. 11 - Output

8 COM 11 Relay Ch. 11 - Output

9 NO 12 Relay Ch. 12 - Output

10 COM 12 Relay Ch. 12 - Output

11 NO 13 Relay Ch. 13 - Output

12 COM 13 Relay Ch. 13 - Output

13 NO 14 Relay Ch. 14 - Output

14 COM 14 Relay Ch. 14 - Output

15 NO 15 Relay Ch. 15 - Output

16 COM 15 Relay Ch. 15 - Output

The decision-computer USB devices use the HID (human interface device). The HID belongs to the generic device class is
integrated in the operating system. If a new HID device is connected, no driver installation is required. The functions for access and
control of HID hid.dll you can find in the Windows System32 folder.

1. Power supply 5V connect

2. USB connect

3. USB input device - device driver
software is successfully installed

4. USB input device - use now
possible

5. In the Control Panel, you can find
the Decision-USB module now

6. Ready to use

 Installation

 Windows 7 installation example

On Windows, we offer a function library and dll file as programming help. See the manual „USBDII_Manual.pdf“ and demo code in
VB/VC / Delphi on the decision-Studio CD.

We offer a C-source Linux users for direct access to the USB devices. See „Dcihid 0.5.1.tgz“ manual and example.

USB test Program.exe is a diagnostic tool to test USB devices on Windows/XP.
The USB test software can be found on the decision-Studio CD.

The examples and drivers be developed continuously. See the latest on the decision-computer-Merz „Service CD“.

An important way to get more informations you find at http://www.usb-industrial.com

Software support on the short way: http://www.usb-industrial.com/support.html

Windows Support 2010/04 USBDII.dll
2.0.0.4

This package includes Dynamic-link library which is developed by De-
cision Computer to communicate with the USB Series Device. It can be
included in multiple computer language (VB6, VC6, VB.NET, C# Delphi)
under Windows.

Watchdog Timer This watchdog timer is a kind of software timer that triggers a system
reset or other corrective action if the main program, due to some fault
condition. The intention is to bring the system back from the unresponsi-
ve state into normal operation. This function is new released and please
contact us to get further information.

VCP driver (For LABKIT Only) Virtual COM port (VCP) drivers cause the USB device to appear as
an additional COM port available to the PC. Application software can
access the USB device in the same way as it would access a standard
COM port. This function is only implemented in USBLABKIT

Linux Support dcihid - 0.5.1
Basic function library
and demo program
2009.05.01

This package includes a c library and a demo program which is develo-
ped by Decision Computer to communicate with the USB Series Device
under Linux. It also includes a ReadMe file to demonstrate how to use it
and package‘s format is .tgz.

Firmware Update Firmware Hex file
Download

This Package includes a driver and a software which is developed by
Decision Computer to update the newest firmware into the USB Series
Device. When new version of firmware is released, user can follow the
instructions to update the firmware.

LabVIEW Support LabVIEW 8
LabVIEW 2009

This package includes manual and examples which demonstrate how
to connect and develop USB Series Device under LabVIEW,which is a
well-known platform and development environment for a visual program-
ming language from NI.

ProfiLAB Support This package includes manual and examples which demonstrate how
to connect and develop USB Series Device under ProfiLAB, which is a
well-known platform and development environment for a visual program-
ming language from Abacom.

Init Value Setting Tool (For Output Channel) The Init Value Setting Tool is a software tool to set init value for output
channel. User can use this tool to plan output channel as default high or
default low when power on.

Data Acquisition and
Remote Monitoring Tool

The Data Acquisition and Remote Monitoring Tool (DARMT) is a soft-
ware tool to record high/low state reports at local computer, and transmit
them to FTP site to achieve data acquisition and remote monitoring

 USB Industrial.com Overview:

 DIAGNOSTICS UNDER WINDOWS

 SOFTWARE PROGRAMMING UNDER WINDOWS AND LINUX

USBBootloader.exe is the tool software to update firmware into the USB SerialDevice Board developed by Decision Computer.
When you get a new version of firmware (.hex), you can follow the steps to update firmware to the board.

1. Remove the external input signal Voltage and only support device power.

2. Set Board Id 15 (All on) for Update Mode and press the Reset button.

3. Connect PC to the Board by USB

4. If this is the first to use this function, please indicate the driver install path to the Driver Folder to install the driver.

5. Open the Software USBBootloader.exe and press the Open button and indicate the hex file and then press the Download button
to update firmware.

6. Set Board Id between 0 ~ 14 and press Reset button and connect PC again.

The remote control of Decision USB products by LAN
or wireless with a remote-PC is very simple with a multi
port USB Server

Because no driver should be installed to the installation
and programming is very easy.

Under Windows, are the external USB I/O directly in the
Device Manager and can be connect or control such as
in the original host PC.

Some unused holes (2 x 5) for JP1 are located on the board. Here a serial port can be added at a special version, with an optional
expansion board, RS-232 or RS-422/RS-485. The ports are controlled via the USB. Please contact us if necessary

 Communication JP1 - only option!

 Firmware Update Manual

 USB by LAN or Wireless

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD. All rights reserved. No part of
SmartLab software and manual may be produced, transmitted, transcribed, or translated into any
language or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without the prior written permission of DECISION
COMPUTER INTERNATIONAL CO., LTD.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a
registered user may use the program on a different computer, but may not use the program on
more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies
within the licensed institution. Duplication of multiple copies is not allowed except through
execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise
specified in the warranty card) that the goods supplied will perform according to the
specifications defined in the user manual. Furthermore that the SmartLab product will be
supplied free from defects in materials and workmanship and be fully functional under normal
usage.

In the event of the failure of a SmartLab product within the specified warranty period,
SmartLab will, at its option, replace or repair the item at no additional charge. This limited
warranty does not cover damage resulting from incorrect use, electrical interference, accident, or
modification of the product.

 All goods returned for warranty repair must have the serial number intact. Goods without serial
numbers attached will not be covered by the warranty.

The purchaser must pay transportation costs for goods returned. Repaired goods will be
dispatched at the expense of SmartLab.

 To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that
you return the Warranty card.

Under this Limited Warranty, SmartLab’s obligations will be limited to repair or replacement only,
of goods found to be defective a specified above during the warranty period. SmartLab is
not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to
use, the SmartLab product.

SmartLab reserves the right to determine what constitutes warranty repair or replacement.

Return Authorization: It is necessary that any returned goods are clearly marked with an RA
number that has been issued by SmartLab. Goods returned without this authorization will not be
attended to.

USB
Dynamic Industrial Interface

V 2.0.1.9

A Universal
Application Programming Interface

To Data Acquisition Products

Users Manual

Design & Implementation by
Decision Computer International Company

No parts of this documentation may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording, or otherwise)

without the prior written permission of Decision Computer International
Company.

2010/04/20

Contents

1. Introduction 3

2. Features 4

3. Device Type definition 5

4. Data Types of Function calls 6

5. Functions to open and close Devices 7

6. Functions for digital input/output 10

7. Functions for reset hardware device 16

8. Functions for analog input/output 17

9. Functions for watch dog 18

10. Using USBDII with different programming language 20
 10.1. C++. 20
 10.2 Visual Basic 20

11. Technical support and Feedback 20

1. Introduction

This document provides the USB Dynamic Industrial Interface Specifications, including all function
calls, and operating procedures.

Disclaimer:

Decision Computer International Company (DECISION) cannot take responsibility for conse-
quential damages caused by using this software. In no event shall DECISION be liable for any
damages whatsoever (including, without limitation, damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) arising out of the use of or
inability to use this product, even if we have been advised of the possibility of such damages.

Trademark Acknowledgments:
Windows 98, Windows ME, Windows 2000, Windows XP, Windows 7, Visual Basic, Visual C++
are registered trademarks of Microsoft Corporation.

2. Features

The USB Dynamic Industrial Interface (USBDII) was created to provide a standard way to access
the functionality provided by all USB data acquisition products. Specifically, the USBDII provides
the following features:

Platform-independent

The library is compatible under Windows 98, Windows ME, Windows 2000, windows XP, Vista,
and Win7. The compatibility under these operation systems guarantees that programs written for
either operating system will work unchanged on the other, even without recompilation.

Abstracts Card Functionality from Card Design

The interface concentrates on a card’s functionality and hides the user from having to know
specifics about the card design, for example, which port needs to be accessed in order to access
specific functionality. All details of the card implementation are hidden from the user.

Multiple Device Support

You could access device by its name or by its information (device type, id index).

Programming Language Independent

The library provides a language independent way to access the USB industrial I/O cards, by using
a Dynamic-Link-Library architecture.

3. Device Type Definition

Below are names for device types and its' corresponding defined value:

USB_16PIO 0x01 // USB 16 Channel Photo Input / 16 Channel Photo Output Board
USB_LABKIT 0x02 // USB LABKIT
USB_16PR 0x03 // USB 16 Channel Photo Input / 16 Channel Relay Output Board
USB_STARTER 0x04 // USB STARTER
USB_8PR 0x06 // USB 8 Channel Photo Input / 8 Channel Relay Output Board
USB_4PR 0x07 // USB 4 Channel Photo Input / 4 Channel Relay Output Board
USB_8PI 0x08 // USB 8 Channel Photo Input Board
USB_8RO 0x09 // USB 8 Channel Relay Output Board
USB_16PI 0x0A // USB 16 Channel Photo Input Board
USB_16RO 0x0B // USB 16 Channel Relay Output Board
USB_32PI 0x0C // USB 32 Channel Photo Input Board
USB_32RO 0x0D // USB 32 Channel Relay Output Board
USB_IND 0x0E // USB Industry Board
USB_M_4IO 0x10 // USB Mini 4 I/O

Notice : Please use this function to open USB_14ADDA or USB_16ADDA.

4. Data Types of Function calls

Since the USBDII was developed in the C++ language, some data types used may not be present
in the programming language you want to use. Please find the following data type conversion
table for your convenience:

HANDLE An opaque 32-bit integer
BYTE A 8-bit unsigned integer
BOOL A 32-bit integer, either 0 (FALSE) or 1 (TRUE)
DWORD A 32-bit unsigned integer
HWND A 32-bit integer representing a valid handle to a Window
LPTSTR A 32-bit flat pointer to a zero terminated string
LPBOOL A 32-bit flat pointer to a variable of type BOOL
LPBYTE A 32-bit flat pointer to a variable of type BYTE
LPDWORD A 32-bit flat pointer to a variable of type DWORD

Also note that the DLL employs the Standard Call (Pascal) calling mechanism, which is used for
all system. USBDII as well and is compatible with VB, VC, Delphi, .NET, and notice the variable
with same type name may have different define in different program language. For example, in
Visual Basic 6, the width of Integer is 16 bits and the width of Long is 32 bits, but in Visual Basic.
Net, the width of Integer becomes 32 bits and the width of Long becomes 64 bits. If you declare
variable with different width from our define, it may cause some run-time error.

5. Functions to open and close Devices

hid_OpenDevice

This function opens a device for further access by USB. Please do not use this
function to open USB_14ADDA or USB_16ADDA.

Declaration
HANDLE hid_OpenDevice (DWORD device_type,
 DWORD device_id);

Parameters
device_type The type of the device to open.
device_id Device's id on the Board.
 For more information, please see “Device Type Table & ID Table” following below.

Return value
A valid handle representing the device, or INVALID_HANDLE_VALUE (-1) if an error occurred. For
USB_STARTER, there is no ID selection and device_id = 0

Example
HANDLE hDevice = hid_OpenDevice(Device Type, Device Index); if (hDevice == INVALID_
HANDLE_VALUE)
{
MessageBox (NULL,“Open Failed!“,“Error“,MB_OK);
}

--

hid_CloseDevice

This function closes a device by USB.

Declaration
BOOL hid_CloseDevice (HANDLE hDevice)

Parameters
hDevice A valid device handle.

Return value
TRUE if successful, FALSE otherwise.

Example
hid_CloseDevice(hDevice);

com_OpenDevice

This function opens a device for further access by Serial Port. Please use this
function to open USB_14ADDA or USB_16ADDA.

Declaration
HANDLE com_OpenDevice (DWORD device_type,
 DWORD device_id,
 DWORD port_num);

Parameters
device_type The type of the device to open.
device_id Device's id on the board.
 For more information, please see “Device Type Table & ID Table” following
 below.
port_num Com Port Num to open.

Return value
A valid handle representing the device, or INVALID_HANDLE_VALUE (-1) if an error occurred.

Example
HANDLE hDevice = com_OpenDevice(Device Type, Device Index, 1); if (hDevice == INVALID_
HANDLE_VALUE)

 MessageBox (NULL,“Open Failed!“,“Error“,MB_OK);

com_CloseDevice
This function closes a device by Serial Port.

Declaration
BOOL com_CloseDevice(HANDLE hDevice)

Parameters
hDevice A valid device handle.

Return value
TRUE if successful, FALSE otherwise.

Example
com_CloseDevice(hDevice);

Remarks
Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LAB-
KIT, USB_STARTER, USB_8PR are not supported by serial communication.

Device Type Table

Product device_type

USB_16PIO 0x01

USB_LABKIT 0x02

USB_16PR 0x03

USB_STARTER 0x04

USB_8PR 0x06

USB_4PR 0x07

USB_8PI 0x08

USB_8RO 0x09

USB_16PI 0x0A

USB_16RO 0x0B

USB_32PI 0x0C

USB_32RO 0x0D

USB_IND 0x0E

USB_M_4IO 0x10

Device ID Table
(Switch Setting on the Device Board)

Switch Setting device_id
1, 2, 3, 4 OFF 0

2, 3, 4 OFF, 1 ON 1

1, 3, 4 OFF, 2 ON 2

3, 4 OFF, 1, 2 ON 3

1, 2, 4 OFF, 3 ON 4

2, 4 OFF, 1, 3 ON 5

1, 4 OFF, 2, 3 ON 6

4 OFF, 2, 3, 4 ON 7

1, 2, 3 OFF, 4 ON 8

2, 3 OFF, 1, 4 ON 9

1, 3 OFF, 2, 4 ON 10

3 OFF, 1, 2, 4 ON 11

1, 2 OFF, 3, 4 ON 12

2 OFF, 1, 3, 4 ON 13

1 OFF, 2, 3, 4 ON 14

1, 2, 3, 4 ON Firmware update

6. Functions for digital input/output

hid_SetDigitalByte

This function sets or clears a byte on a digital output line by USB.

Declaration
BOOL hid_SetDigitalByte (HANDLE hDevice,
 DWORD dwPort,
 BYTE byPortState
);

Parameters
hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice
dwPort The index of the port on the card to manipulate. The first port has index 0.
 For more information, please see “Write Address Table” following below.
byPortState The new state of the port

Return value
TRUE if successful, FALSE otherwise.
If an error occurred, GetLastError() may return the following values:
ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of
range for the device selected.

Example
HANDLE hDevice = hid_OpenDevice(0x01,0);
if (hDevice != INVALID_HANDLE_VALUE)
{
hid_SetDigitalByte(hDevice, 0, 0xFF); // set’s all bits on the first port
hid_CloseDevice(hDevice);
}

com_SetDigitalByte

This function sets or clears a byte on a digital output line by Serial Port.

Declaration
BOOL com_SetDigitalByte (HANDLE hDevice,
 DWORD dwPort,
 BYTE byPortState
);

Parameters
hDevice A valid device handle, previously obtained from com_OpenDevice
dwPort The index of the port on the card to manipulate. The first port has index 0. For
 more information, please see “Write Address Table” following below.
byPortState The new state of the port

Return value
TRUE if successful, FALSE otherwise.
If an error occurred, GetLastError() may return the following values:
ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of
range for the device selected.

Example
HANDLE hDevice = com_OpenDevice(0x01,0);
if (hDevice != INVALID_HANDLE_VALUE)
{
com_SetDigitalByte(hDevice, 0, 0xFF); // set’s all bits on the first port
com_CloseDevice(hDevice);
}

Remarks
Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LAB-
KIT, USB_STARTER, USB_8PR are not supported by serial communication.

Write Address Table

Product dwPort Content

USB_16PIO 0x02 OUT07 to OUT00

0x03 OUT15 to OUT08

USB_LABKIT 0x03 P1D07 to P1D00

USB_STARTER 0x03 P1D07 to P1D00

USB_16PR 0x02 OUT07 to OUT00

0x03 OUT15 to OUT08

USB_8PR 0x01 OUT07 to OUT00

0x02 DIO7 to DIO0

0x03 DIO15 to DIO8

USB_4PR 0x02 OUT03 to OUT00

USB_8RO 0x02 OUT07 to OUT00

USB_16RO 0x02 OUT07 to OUT00

0x03 OUT15 to OUT08

USB_32RO 0x00 OUT07 to OUT00

0x01 OUT15 to OUT08

0x02 OUT23 to OUT16

0x03 OUT31 to OUT24

USB_IND 0x00 Port 0

0x01 Port 1

0x02 Port 2

0x03 Port 3

0x04 Port 4

0x05 Port 5

0x06 Port 6

0x07 Port 7

0x08 DIO

0x0D IOCONFIG

USB_M_4IO 0x02 OUT03 to OUT00

hid_GetDigitalByte

This function reads a complete byte from a digital input port of a device by
USB.

Declaration
BOOL hid_GetDigitalByte (HANDLE hDevice,
 DWORD dwPort,
 LPBYTE lpbyPortState
);

Parameters
hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice
dwPort T he index of the port on the card to manipulate. The first port has index 0.
 For more information, please see “Read Address Table” following below.
lpbyPortState A pointer to a variable of type BYTE receiving the new state of the port

Return value
TRUE if successful, FALSE otherwise.
If an error occurred, GetLastError() may return the following values:
ERROR_INVALID_PARAMETER – The handle passed was invalid, or the port number was out of
range for the device selected.

Example
HANDLE hDevice = hid_OpenDevice(0x01,0); if (hDevice != INVALID_HANDLE_VALUE)
{
hid_GetDigitalByte(hDevice, 0, &byState); // reads the state of the first input port hid_
CloseDevice(hDevice);

}

com_GetDigitalByte

This function reads a complete byte from a digital input port of a device by
Serial Port.

Declaration
BOOL com_GetDigitalByte (HANDLE hDevice,
 DWORD dwPort,
 LPBYTE lpbyPortState
);

Parameters
hDevice A valid device handle, previously obtained from com_OpenDevice
dwPort The index of the port on the card to manipulate. The first port has index 0.
 For more information, please see “Read Address Table” following below.
lpbyPortState A pointer to a variable of type BYTE receiving the new state of the port

Return value
TRUE if successful, FALSE otherwise.
If an error occurred, GetLastError() may return the following values:
ERROR_INVALID_PARAMETER – The handle passed was invalid, or the port number was out of
range for the device selected.

Example
HANDLE hDevice = com_OpenDevice(0x01,0);
if (hDevice != INVALID_HANDLE_VALUE)
{
com_GetDigitalByte(hDevice, 0, &byState); // reads the state of the first input port
com_CloseDevice(hDevice);
}

Remarks
Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LAB-
KIT, USB_STARTER, USB_8PR are not supported by serial communication.

Read Address Table

Product dwPort Content

USB_16PIO 0x00 IN07 to IN00

0x01 IN15 to IN08

USB_LABKIT 0x02 P0D07 to P0D00

USB_STARTER 0x02 P0D07 to P0D00

USB_16PR 0x00 IN07 to IN00

0x01 IN15 to IN08

USB_8PR 0x00 IN07 to IN00

0x02 DIO7 to DIO0

0x03 DIO15 to DIO8

0x10 JP9/JP10 Settings

USB_4PR 0x00 IN03 to IN00

USB_8PI 0x00 IN07 to IN00

USB_16PI 0x00 IN07 to IN00

0x01 IN15 to IN08

USB_32PI 0x00 IN07 to IN00

0x01 IN15 to IN08

0x02 IN23 to IN16

0x03 IN31 to IN24

USB_IND 0x00 Port 0

0x01 Port 1

0x02 Port 2

0x03 Port 3

0x04 Port 4

0x05 Port 5

0x06 Port 6

0x07 Port 7

0x08 DIO

0x0D IOCONFIG

0x10 Port 0 default value

0x11 Port 1 default value

0x12 Port 2 default value

0x13 Port 3 default value

0x14 Port 4 default value

0x15 Port 5 default value

0x16 Port 6 default value

0x17 Port 7 default value

0x18 Port DIO default value

0x19 Input/output default setting
USB_M_4IO 0x00 IN03 to IN00

Remarks
In USB_8PR, we provide 2 digital ports for user to define either as input or output. It can be defined
by Jumper 10 and Jumper 11 on the board. And we can use hid_GetDigitalByte / com_GetDigitalByte
function to read Jumper State to determine witch port is either input or output.

hid_GetDigitalByte(hDevice, 0x10, &byState); // or use com_GetDigitalByte for serial communication

When JP9 is closed, DIO7 - DIO0 is for Input. The fifth bit of byState is 0
When JP9 is opened, DIO7 - DIO0 is for Output. The fifth bit of byState is 1
When JP10 is closed, DIO15 – DIO8 is for Input. The sixth bit of byState is 0
When JP10 is opened, DIO15 – DIO8 is for Output. The sixth bit of byState is 1

7. Functions for reset hardware device

hid_ResetHW
This function directly resets the hardware device by USB. And all channels
on the board will load default value. If you need to control the device again,
please use hid_open to get the handle again.

Declaration
BOOL hid_ResetHW(HANDLE hDevice)

Parameters
hDevice A valid device handle.

Return value
TRUE if successful, FALSE otherwise.

Example

hid_ResetHW (hDevice);

--

com_ResetHW

This function directly resets the hardware device by Serial Port. And all chan-
nels on the board will load default value.

Declaration
BOOL com_ResetHW(HANDLE hDevice)

Parameters
hDevice A valid device handle.

Return value
TRUE if successful, FALSE otherwise.

Example
com_ResetHW(hDevice);

8. Functions for analog input/output

hid_GetAnalogChannel

This function reads a complete word from an analog input port of a device by
USB.

Declaration
BOOL hid_GetAnalogChannel (HANDLE hDevice,
 DWORD dwPort,
 LPDWORD lpdwPortState
);

Parameters
hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice dw-
Port The index of the port on the card to manipulate. The first port has index 0.
lpdwPortState A pointer to a variable of type DWORD receiving the new state of the port

Return value
TRUE if successful, FALSE otherwise.
If an error occurred, GetLastError() may return the following values:
ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of
range for the device selected.

Example
HANDLE hDevice = hid_OpenDevice(0x02,0); // USB_LABKIT
if (hDevice != INVALID_HANDLE_VALUE)
{
hid_GetAnalogChannel (hDevice, 0, &dwState); // reads the state of the first analog input port
hid_CloseDevice (hDevice);
}

Remarks
This function now only enable in USB_LABKIT and USB_STARTER device. The range of dwPort
is from 0~7.

